Vitamin K3 (menadione)-induced oncosis associated with keratin 8 phosphorylation and histone H3 arylation.

نویسندگان

  • Gary K Scott
  • Christian Atsriku
  • Patrick Kaminker
  • Jason Held
  • Brad Gibson
  • Michael A Baldwin
  • Christopher C Benz
چکیده

The vitamin K analog menadione (K3), capable of both redox cycling and arylating nucleophilic substrates by Michael addition, has been extensively studied as a model stress-inducing quinone in both cell culture and animal model systems. Exposure of keratin 8 (k-8) expressing human breast cancer cells (MCF7, T47D, SKBr3) to K3 (50-100 microM) induced rapid, sustained, and site-specific k-8 serine phosphorylation (pSer73) dependent on signaling by a single mitogen activated protein kinase (MAPK) pathway, MEK1/2. Normal nuclear morphology and k-8 immunofluorescence coupled with the lack of DNA laddering or other features of apoptosis indicated that K3-induced cytotoxicity, evident within 4 h of treatment and delayed but not prevented by MEK1/2 inhibition, was due to a form of stress-activated cell death known as oncosis. Independent of MAPK signaling was the progressive appearance of K3-induced cellular fluorescence, principally nuclear in origin and suggested by in vitro fluorimetry to have been caused by K3 thiol arylation. Imaging by UV transillumination of protein gels containing nuclear extracts from K3-treated cells revealed a prominent 17-kDa band shown to be histone H3 by immunoblotting and mass spectrometry (MS). K3 arylation of histones in vitro followed by electrospray ionization-tandem MS analyses identified the unique Cys110 residue within H3, exposed only in the open chromatin of transcriptionally active genes, as a K3 arylation target. These findings delineate new pathways associated with K3-induced stress and suggest a potentially novel role for H3 Cys110 as a nuclear stress sensor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apoptosis inducing factor (AIF) mediates lethal redox stress induced by menadione

Mitochondrial apoptosis inducing factor (AIF) is a redox-active enzyme that participates to the biogenesis/maintenance of complex I of the respiratory chain, yet also contributes to catabolic reactions in the context of regulated cell death when AIF translocates to the cytosol and to the nucleus. Here we explore the contribution of AIF to cell death induced by menadione (2-methyl-1,4-naphtoquin...

متن کامل

Modulation of cytotoxicity of menadione sodium bisulfite versus leukemia L1210 by the acid-soluble thiol pool.

We investigated the mechanism of antitumor activity of the water-soluble derivative of menadione, menadione sodium bisulfite (vitamin K3), versus murine leukemia L1210. Vitamin K3, in concentrations greater than 27 microM, caused time- and concentration-dependent depletion of the acid-soluble thiol (GSH) pool. Maximal GSH depletion to 15% of control occurred at 45 microM vitamin K3. Vitamin K3-...

متن کامل

Phosphorylation of histone H3 during transcriptional activation depends on promoter structure.

Covalent modifications of histone N-terminal tails are required for the proper assembly and activation of the general transcription factors at promoters. Here, we analyze histone acetylation and phosphorylation in Drosophila transgenes activated by the yeast Gal4 transcriptional activator in the context of different promoters. We show that, independent of the promoter, transcription does not co...

متن کامل

Cancer Therapy: Preclinical The Phosphatase Inhibitor Menadione (Vitamin K3) Protects Cells from EGFR Inhibition by Erlotinib and Cetuximab

Purpose: Skin toxicity is themain side effect of epidermal growth factor receptor (EGFR) inhibitors, often leading to dose reduction or discontinuation. We hypothesized that phosphatase inhibition in the skin keratinocytes may prevent receptor dephosphorylation caused by EGFR inhibitors and be used as a new potential strategy for the prevention or treatment of this side effect. Experimental Des...

متن کامل

Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats.

Mice have the ability to convert dietary phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) and store the latter in tissues. A prenyltransferase enzyme, UbiA prenyltransferase domain-containing 1 (UBIAD1), is involved in this conversion. There is evidence that UBIAD1 has a weak side chain cleavage activity for phylloquinone but a strong prenylation activity for menadione (vitamin K3), w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 68 3  شماره 

صفحات  -

تاریخ انتشار 2005